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e A theory of unsteady aerodynamics (in terms of induced flow) is offered for a lifting rotor in hover and forward
flight. The induced flow is expressed azimuthally by a Fourier series and radially by Legendre functions. The
magnitude of each term is determined from first-order differential equations in either the time or frequency

domain. The coefficients of the differential equations de

pend only on the wake skew angle. The forcing functions

are user-supplied, radial integrals of the blade loadings. In a nonlifting climb, the theory gives results almost
identical to those of Loewy theory but with improved values of the wake apparent mass and correct tip-loss
behavior. The theory implicitly includes dynamic-inflow theory, the Prandtl/Goldstein static inflow distribution,
and Theodorsen theory. Finally, comparisons with other theories and experimental data show the theory to be.

accurate even up to 1,000 harmonics.

Notation Jo.d\ = Bessel Functions
a = slope of lift curve, 1/rad k = reduced freq. in rotating system, b
Aﬂ:(k) - induced-flow factor kon = reduced frequency of m-th harmonic, bm
[A™],[B™] = matrices of integrals Kn = apparent-mass diagonals
{A™],[B"] = special case of [A™] and [B™] — . .
b — bl : L. circulatory lift/unit span, N/m
= blade semi-chord, ¢/2, m I _ - L JaO2R3

. - o : . - " = nondimensional lift of gth blade L /pQ°R
b, b = dimensionless semi-chord, b/x, b/R [ L‘i = matrix of inflow gains
B = tip-loss factor [L<],[L*] = matrix of harmonic couplings
< = blade chord, m L] = static inflow operator
¢ = dimensionless blade chord, ¢/R M = total number of harmonics
8C,,8Cy = perturbation rolling and pitching moment coef- M] = apparent mass matrix

ficients i m = harmonic number
8Cr = perturbation thrust coefficient n = polynomial number
Cr = steady thrust coefficient P = flapping frequency, per/rev
Cr = total thrust coefficient, Cr + 3Cr p = polynomial number
cll = induced flow operator P,(r.y,t) = pressuredistribution of gth blade, pressure/pQ’R?
C(k) = Theodorsen Function P.(y) = chordwise pressure function
C'(k) = Loewy Function _ ) P(v) = Legendre functions
cr.Dy = coefficients of potential function P(v) = normalized functions, (— D)™P(w)/pT

n = chordwise distribution function q = blade index
F',G’ = real and imaginary parts of C'(k) 2] = number of blades
f_z = wake spacing glivided by semi_-chord on(im) = associated Legendre functions
J = blade-passage index, column index 0m(im) = normalized functions, Q7 (in)/ QT (i0)
J = number of blade-passage harmonics r — harmonic number
F = normalized radial position, x/R
*This paper was presented at the 43rd Annual Forum of the American R = rotor radius, m

Helicopter Society, St. Louis, Mo., May 18-20, 1987. s = cyclic harmonic, Table 11
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number of shape functions per harmonic
power of F in distribution, Eq. (30) only
time, sec

nondimensional time, = (¢

time constant of m-th harmonic at V=1
induced velocity at airfoil m/sec

velocity normal to airfoil m/sec

velocity relative to airfoil m/sec

mass-flow parameter

induced velocity at rotor disc, velocity/QQR
Loewy wake-spacing function

radial coordinate, m

chordwise coordinate, positive downstream,
divided by R

Bessel functions of second kind

coordinate normal to rotor, /R

wake skew angle at disc, rad, zero for axial
flow

T T

QN; \<H§§<QSS§~|~—‘M =
*

a7, Br = induced-flow coefficients

B = blade flapping angle, rad

v = blade Lock number

85 = Kronecker delta

n = ellipsoidal coordinate, = O on disc

0 = blade pitch angle, rad

0,,0,,0,. = collective and cyclic pitch, rad

0, = pitch angle of g-th blade, rad

A = free-stream flow normal to disc, divided by (IR

Aomes Mms = inflow variables, Ref. 23

N = induced flow at blade, U/{)R, in two-dimen-
sional model

A7 = mth harmonic of X\, in two-dimensional model

Am = weighting function

" = advance ratio

v = momentum-theory value of nondimensional,
uniform inflow

v = ellipsoidal coordinate

Vo = v from which § originates

§ = nondimensional coordinate along streamline,
positive upstream

p = density of air, kg/m

2 . 2 1 (n+m)!

(i3] integral (0 to 1) of (P})*, ot ——_(n-—m)!

o = rotor solidity, Qc/(wR)

e T = coefficients of pressure expansion

d>(v,'_rl,$,t) = acceleration potential, pressure/p{)?R>

&(v,P,1) = pressure across disc divided by pQ*R?

X = wake skew parameter, tan (a/2)

¢ = azimuthal position on rotor disc, rad

¥, = spatial position of g-th blade, rad

" = ellipsoidal coordinate, = { on disc

TW = assumed velocity distributions

1/ = 4 from which £ originates

W= w, = per-rev frequency in nonrotating system

wg = w, = per-rev frequency in rotating frequency

Q = rotor speed, rad/sec

(m!! = (m(m-2)m—-4). . . Qorl),(-H!' = -1,
(= D! =1, O = 1, Refs. 26-27

© = d(ydt

™ = d()/dt

(" = due to flow acceleration

)Y = due to momentum flux

Introduction

Classical Unsteady Theories

Although there are a great number of research tools that have
increased our understanding of rotor unsteady aerodynamics,
there are only a very few unsteady aerodynamic theories that
can be applied to realistic problems of helicopter dynamics.

-
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Perhaps the most fundamental tool is Theodorsen theory, Ref.
1, which is often included in rotor analtyses. The Theodorsen
theory for lift contains both circulatory and noncirculatory terms.
The circulatory terms take the form of a quasi-steady lift mul-
tiplied by a lift-deficiency function, C(k),

L. = 2mpbU(U, + b©/2)C(k) (1)

where U, is the velocity normal to the blade at mid-chord. To
understand the nature of this unsteady aerodynamic behavior,
it is interesting to rewrite Eq. (1) in terms of the flow induced
by the shed vorticity, U;.

L. = 2mwpbU(U, + bOI2 — Uy (2a)

U, = A(K)L/(2wpbU) (2b)
: 1

L. = 2wpbU(U, + b0/2) m (2c)

The feedback constant, A(k), relates the induced flow at the
midchord to the circulation shed from the blade. It is directly
related to C(k) by the relationship

1
Ck) = TF AR 3)

We find that A(k) in Theodorsen theory is expressed more
simply than is C (k).

Yo(k) + io(k)

AR =3 0 = i ®

O

Figure 1 illustrates the relationship between Eq. (2) and a
blade dynamics problem. We see that blade aerodynamics can
usually be separated into two distinct theories. One theory, the
forward loop, relates the flow field at the blade (¢.g., angle of
attack, gradient, rates, etc.) to the lift and circulation developed
on the blade. This implies the use of Eq. (2a), for the circulatory
lift, and the use of standard apparent mass terms for the non-
circulatory lift. The second theory, the upper feedback loop,
relates the time-history of circulatory lift on the blade to the
resultant induced flow at the blade, Egs. (2b) and (4). The
blade dynamic theory need not affect these aerodynamic the-
ories. In other words, despite the fact that blade motions enter
into the angle of attack, the blade lifting theory can be derived
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Fig. 1. Block diagram of inflow as open loop (---) and closed loop
( ) systems. -
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independently of the blade dynamic theory (the lower feed-
back loop in Fig. 1). Similarly, despite the fact that the induced
flow enters the angle of attack, the induced-flow theory can be
developed independently of the blade-lift theory. In other words,
L. and A(k) can be considered independently.

The validity of this point of view can be further seen in
Loewy theory, Ref. 2. There, the same flat-plate airfoil is used
as in Theodorsen theory. Thus, there is no change in the re-
lationship between velocity field and circulation; Eq. (2a) re-
mains unchanged. However, Ref. 2 does alter the induced-flow
theory by introducing layers of vorticity (spaced apart by h
semichords) that simulate the rotor wake. The resultant lift-
deficiency function can be expressed as in Eq. (3) with A(k)
given by

Yolk) + idp(k)(1 + 2W)
JioQ + 2w) — iY (&)

A(k) = &)

The Loewy wake-spacing function, W, accounts for the layers
of vorticity in a 2-dimensional manner. It is given by

W = [exp(kh + 2mio/Q) — 117" (6)

where o is the frequency in the nonmrotating system. Thus,

‘Loewy theory allows for the separation of lift theory and in-

duced-flow theory, as indicated by Eq. (2).

We should also mention the work of Miller, Ref. 3. His 3-
dimensional theory similarly can be divided into lift theory and
induced-flow theory, although the latter theory is not obtained

_ inclosed form for general k. However, his 2-dimensional theory

can be obtained in closed form with

Yo(k) + i(Jo(k) + 2W)

A = T — i

¢)

Equations (5) and(7) give nearly identical results for parameters
typical of helicopters. In fact, they have the same near-wake
approximation, Ref. 4.

A(k) = wki2 + wkW = wk(1/2 + W) (8)

Equation (8) has some interesting properties which will be
of interest both here and later in this paper. First, we note that
1k/2 is the near-wake approximation to either Theodorsen theory
or Sears theory (lift-deficiency for gust response); and this near-
wake theory is valid for k < 1.0 (which is realistic for heli-

copters), Ref. 4. Thus, Eq. (8) is a reasongble approximation

of classical, unsteady aerodynamics for a rotor. Second, we
note from Eq. (6) that for small wake spacing, kh < .5, W
oscillates between — 1/2 and 1/kh, the latter occurring as sharp
spikes at integer multiples of the blade number (0 = jQ).
Therefore, A(k) varies between 0 and w/h; and C'(k) varies
between 1 and A/(h + ). An interesting conclusion is that,
away from these sharp spikes (for which W = — 12,A = 0),

_ the effect of the two-dimensional rotor wake is to negate the

major portion of the Theodorsen function, wk/2.

Need for Advanced Theories

In the preceding discussion of classical unsteady aerodyn-
amics, we have seen that Theodorsen theory is not only in-
adequate; but it is probably counter-productive for rotor analyses.
A logical conclusion from this might be that we ought to use
only Loewy theory. However, there are several aspects of Loewy
theory that make it less than ideal for aeroelastic analysis.

First, the theory is for the linear aerodynamics of a flat-plate
airfoil, whereas we need a theory that can be combined with
more sophisticated airfoil theories. The second drawback of
Loewy theory is thatitis a two-dimensional theory. Therefore,
it does not account for radial coupling of thrust and induced

INDUCED FLOW MODE 1 7

flow. A third problem is that the theory is strictly for a low-
lift climb. Although the *‘low-lift’’ part can be overcome by
use of a modified wake spacing, the *‘climb’’ part means that
we have no way of applying the theory in forward flight, which
is exactly the conditien for which we most need unsteady aero-
dynamics. Fourth, Loewy theory, like all of the classical un-
steady theories, is in the frequency domain. This makes it
inappropriate for conventional aeroelastic eigenvalue analysis
(with the possible exception of V—g plots for stability bound-
aries in hover). One cannot even iteratively assign a k to each
mode due to the facts that: 1) significant damping is present
in flap and 2) multiple frequencies occur for each mode in
forward flight. Lastly, the Loewy function has a singularity in
the collective mode at @ = k = O which gives C'(0) a finite
imaginary part. (This singularity is usually overlooked in the
literature because we often fix either w or k and let the other
go to zero rather than taking the limit as they both go to zero.)

Given these shortcomings of classical theories of unsteady
aerodynamics, we might look to more sophisticated theories
that could be used in rotor aeroelasticity. The most well-known
of such theories would certainly be prescribed-wake lifting-line
theories, Refs. 5—6, free-wake lifting-line theories, Ref. 7, and
lifting surface theories, Ref. 8. Interestingly, these also can be
expressed in the framework of the block diagram of Fig. 1. In
particular, the lift part of the theories either relate the circulation
of a lifting line to the blade circulation (as computed by some
formula), or else they adjust the circulation of panels so as to
match a boundary condition at the blade. Such a lift calculation
only requires the local flow field as an input. Therefore it
qualifies as the forward loop of Fig. 1. The induced-flow cal-
culation (or feedback loop) of these vortex theories is found
from the Biot-Savart Law as applied to the geometry of the
wake. Thus, different assumptions on wake geometry can change
the induced-flow theory without changing the lifting theory.
These vortex methods can include a sophisticated wake that is
three-dimensional with wake contraction in forward flight.
Therefore, the more advanced wake models can overcome all
of the deficiencies of Loewy theory. Such methods stand as
important tools for helicopter analysis.

However, when we come to the question of performing an
aeroelastic analysis of a realistic rotor, we find that vortex-
filament theories are not presently a viable alternative. First of
all, for any problem beyond rigid-blade flapping, the compu-
tational effort of tracking the unsteady vorticity and of com-
puting induced-flow integrals over hundreds of filaments at
every time step is simply too large to handle on a routine basis.
Second, these vortex theories are restricted to time-marching
problems. They are not in a format that would allow eigenvalue
analysis. Even Floguet solutions, which entail time-marching
over one period, cannot be applied because the states of the
flow field either are not defined or involve too many wake
degrees of freedom. One can impose restrictions that allow a
more closed-form version of vortex theories. Such restrictions
include a cylindrical wake and an infinite number of blades,
Ref. 4. Several authors have developed such theories, Refs. 3
and 9—12; but the assumption of an infinite number of blades
restricts the results to only the first or second harmonic of
induced flow. _

As a final point on the need for a better induced flow theory,
we consider advanced theories for the blade-lift portion of Fig.
1. Many of these are two-dimensional, dynamic-stall theories
that rely on classical methods (e.g., convolution with a Wagner
function) to obtain the wake, Refs. 13-14. Others are more

. sophisticated Euler or Navier-Stokes solvers. These solve a

finite-difference mesh near the blade but rely on other estimates

for the induced flow entering that mesh, Ref. 15. Because thesé

theories can separate the blade theory from the induced-flow
theory, and because they presently utilize very primitive wake
models, these theories could also benefit from an alternative
induced-flow model for rotors.
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Finite-State Models

One type of induced-flow formulation that holds promise for
aeroelasticity calculations is the class of finite-state models.
Such models are formulated as differential equations for the
unknown states of the flow field. This type of formulation
-allows direct computation of Floquet or constant-coefficient
eigenvalues while not precluding time-history or frequency-
domain analyses. The difficulty, however, is in the extraction
of a finite-state model from an adequate aerodynamic theory.
For the classical treatment of two-dimensional aerodynamics,
researchers have used trial and error to obtain one- and two-
pole approximations to the Wagner and Kiissner responses,
Ref. 16. (Such a treatment is used in Ref. 14 in combination
with dynamic stall.)

Friedmann, Refs. 17—18, has applied Bode Plot methods to
fit multiple-pole approximations to both Theodorsen and Loewy
theories. These involve up to 17 poles (i.e., 17 extra state
variables) at each radial position. An alternative method of
obtaining a finite-state model is given in Ref. 19. Interestingly,
this reference shows that finite-state models also fall into the
category of the schematic in Fig. 1. In fact, Ref. 19 refers
directly to the *‘feed-forward’’ and *‘feedback’’ portions of the
model. References 17-19 provide an important improvement
toward a useful induced-flow model in that they remove the
frequency-domain limitation of classical models. However, the
other problems with classical theories remain (e.g., no forward-
flight model, etc.). Furthermore, the resultant states must be
defined at every blade station; and these states have little phys-
ical significance.

What we propose in this paper is a new, finite-state model
of rotor unsteady aerodynamics. The model is formulated purely
as an induced-flow feedback, as depicted in Fig. 1. Therefore,
it takes as input whatever circulatory lift distribution is present
(regardless of the source). The model is based on actuator-disc
theory, but modified so as to be unsteady and to have a finite
number of blades. The states of the model are the coefficients
of azimuthal harmonics and of radial shape functions that de-
'scribe the induced-flow field. The number of functions is de-
cided by the user. These states obey ordinary differential equations
that may be written in the time or frequency domain. Therefore,
the model is well-suited to aeroelastic analysis.

Theoretical Development

Potential-Flow Theory

The fundamental fluid-mechanics of this model is based on
the potential-flow functions derived by Prandtl and applied by
Kinner, Ref. 20. Prandtl was able, by theeuse of ellipsoidal
coordinates, to obtain closed-form potential functions that give
an arbitrary pressure discontinuity across a circular disc (an
acceleration potential). Mangler and Squire, Ref. 21, and Jog-
lekar and Loewy, Ref. 22, applied this as a steady actuator-
disc theory to give induced-flow distributions in forward flight.
To do this, they spread the blade loads evenly over the azimuth
(i.e., an infinite number of blades). Pitt and Peters, Ref. 23,

~extended this work to make it an unsteady dynamic-inflow
theory in the time domain. Later, Peters and Gaonkar, Ref.
24, applied higher-harmonic versions to rotors with finite num-
bers of blades; but the results seemed contradictory, and higher-
harmonic versions were abandoned. Here, we return to a higher-
harmonic theory of dynamic inflow as the basis for our unsteady
model. The theory is based on the Prandtl potential function,
but the pressure distribution is allowed to contain the pressure
spikes of individual blades as they rotate around the disc.

The Prandtl potential function ®(v, m, ¥, f), can be placed
in the following form

®= ¥ PrQIGWICY cos(my) + DY sin(mi)]

n.m
a>m, n+m odd

)
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where the coefficients C7 and D7 uniquely define the pressure
field. The variables v and m are ellipsoidal coordinates. On
the disc,m = Qand v = \/'1 — r2. The functions P7(v) and
Q™ (in) are Legendre Functions of the first and second kind,
Refs. 26 and 27.

An important point is that ® has a discontinuity across the
disc. It follows that the pressure on the rotor disc is the dif-
ference between the upper and lower pressure. Thus, we have

o(r, ¥, D = =2 2, PRQI0)LC cos(my)

+ D" sin(my)] . (10a)
or

&, U, D = 2, Prw)[71< cos(m) + 77 sin(mp)]  (10b)

where
e = (= 1)"*12Qr30)Crpy (10¢c)
s = (= 1)t 12Qmi0)Drpr (10d)

In the model of this paper, this pressure distribution may vary
with time. Therefore, the coefficients C7', D7, and T} are also
time dependent.

There are two methods whereby Eq. (10b) can yield the
unsteady velocity field. In the first method, we assume that ¢
oscillates harmonically (all pressures in phase) as ¢ = ¢ exp(iwt).
This is done in Refs. (23) and (25) and results in Theodorsen
type integrals for A(k). However, it is also possible to avoid
the frequency domain and to stay entirely in the time domain
for the induced flow computation. In particular, we separate
the potential function (i.e., nondimensional pressure) into the
part due to acceleration (®#, ¢*) and the part due to momentum
flux (®Y, ¢¥). From the momentum and continuity equations,
it follows that ®* and ®¥ must each satisfy Laplace’s equation
and that the flow w relates to @-in the following ways

D T R A

w= -5 ) S dE=LI$"] (11a)
IpA

b= - ==l &=0=Cl$" (11b)

where V is the normalized free-stream velocity (velocity divided
by QIR), z is the coordinate normal to the rotor (positive down),
and £ is the stream-line coordinate (zero at the disc, positive
upstream).

Equation (11) defines the linear operators L[ ] and C[ ]. In
other words, because w and w can be obtained from a linear
operation or ®" and ®4, and because P is linearly related to
¢ through the coefficients of the Legendre functions in Eqs.
(9) and (10), the mathematical manipulations in Eqgs. (11a) and
(11b) can be treated as linear operators. It follows that, if we
can invert the operators L[ ] and C[ ], then we can write a
differential equation for the induced velocity at the rotor disc
in terms of the pressure rise across the disk.

CTUWI + L7'[w] = 6 + ¢V = ¢ (12)
Equation (12) is a time-domain induced-flow theory that pro-
vides for the evolution of induced flow given rotor lift.

Matrix Form

As it turns out, the operators in Egs. (11) and (12) are fairly
casily inverted, provided that w and ¢ are expanded in series
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of suitable functions. We have already seen that the potential
function & is naturally expanded in a double series of Legendre
functions and harmonic functions with coefficients C7 and
D™ (or T7); and these are “directly related to the pressure on
the disc, Egs. (9-10). In the same manner, we may expand
the induced flow distribution (at the rotor disc) in terms of
harmonics and arbitrary radial functions, $7'(v).

wir, &) = >, ymw)[ar cos(my) + BY sin(mp)]  (13)

nm

The coefficients a™(7) and B7(7) thus become the states of our
model, and they have physical significance as the coefficients
of assumed flow distributions.

_ We may substitute Eq. (13) into Eq. (12), premultiply by
P and cos(my) (or sin(my)), and integrate over the rotor disc
to obtain a set of differential equations that relate the induced
flow (a7, B7) to the pressure (77). The a and B equations are
uncoupled on the left-hand side. The a equations are in the
form below, and the B equations are identical (except that there
is no m = 0 term, and L™ becomes L™").

N . 1f
[ K7 ][ AL] . {{a:}}
N B B
. ?—I ‘. M 1 :
+ VL (Bx] |yl = 5{1'.“}

(.l 4a)

or
{&;} + (L) Ha} = {r7/2} (14b)

Note that, in Eqs. (14a) and (14b), the superscripts r.and m
refer to a partition number (row or column) that corresponds
to a harmonic number (0 to M for cosine, 1 to M for sine).
The subscripts (1, p, ) correspond to row-column indices with
each partition; and they imply a certain polynomial number
(e.g., P7, Py, or ). Recall that n > m and n + mis odd.
Therefore, (n, p. 5) do not take on consecutive integers (1, 2,
3,4, .. .etc.) as in a normal matrix index. Instead, they take
onvaluesof (m + 1,m + 3, m + 5, etc.). With these prov-
isos, Eq. (14) obeys the normal rules for multiplication of
partitioned matrices.

It is useful, here, to explain each of the thatrix elements of
Eq. (14). First, the diagonal matrix K7’ results from the 7m

derivative which is taken in the C{ ] operator.

mo ZQRGO) _ 2,
Km = 0m(10)’ = 1_rH,, (15a)
_ where
— 1 — —_
H:'=(n+m DIYn-m-D! (15b)

(n+m)!t(n—m!!

The double factorial symbol, ( )!!, implies a factorial which

“takes on only every other term down to 2 or 1 [n!! =
n(n—2)(n—4) ... (2 or )].* By the use of the gamma
function, one can show that (0)!! = 1, (—D!! = 1, and
(—=3)!' = —1. Due to the ratios of double factorials in Eq.
(15), H™ and K™ are very well conditioned, despite the fact
that the individual factorials can become quite large.

*See Ref. 26 page xliii or Ref. 27, pages 258 and 1046.
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The matrices [A™] and [B™] provide for coupling between
radial inflow distributions of any given harmonic. They are
simple integrals of the Legendre functions and of the assumed
functions.

1
A = J Prmdn(v)vdv (16a)
0

1 —
Bn = L Prmr(v)dv (16b)

We recall that on the disc, F = V1 — v, v = V1 - 72,
and —vdv = FdF. Thus, the integrals can be performed in
either Forv.

The matrix L contains the interharmonic coupling of the
model. It gives the pth polynomial of the rth harmonic of
induced flow due to the nth polynomial of the mth harmonic
of pressure. Mathematically, this is :

‘ 1 2w (1 _ o d — _
5 Jo _L Pp(vo) J:) - (Pr(v)Qm(im)]

Ly
X cos(my)dE dvedy (I7a)

e 1 2% l_r b d

Ly =~ L L Py(vo) COS(r%)J; o
X [Pr()Q7(im)] cos(my)dE dvodly  (1Tb)

1 = ' _ L = d

Ly = ;L L Py(vo) sin(riy) Jo e

X [Pr(v)Qy(im)] sin(my)dE dvody  (17)

where the Legendre functions have been normalized and where
£ begins at the point v, {5 on the disc and extends-along a
streamline. Thus, v, m, and ¥ depend on the value of the £
coordinate as well as its point of origin on the disc. For axial
flow, £ = —z, and the L matrices become identity matrices.
The V outside of L is the free-stream velocity divided by QIR.
It follows that L depends only on the disc angle of attack. The
didz in Eq. (17) must be transformed to m and v derivatives
through the chain rule; and, then, the L elements can be found
numerically, as outlined in Ref. 28. However, subsequent to
the publication of Ref. 28, we have been able to obtain these
integrals in closed form. They depend only on wake skew angle,
a, and are given in Ref. 35.

Pressure Integrals

In order to apply the above theory, we must be able to write
the pressure coefficients, 777, in terms of circulatory blade lift.
We assume nothing about this blade lift except that it occurs
only on the blade and is available at every instant of time from
a blade-lift model (e.g., dynamic stall, linear lift-curve slope,
quasi-steady, etc.). At that instant of time, we may expand this
lift distribution as a discontinuous pressure distribution in terms
of the Legendre functions and harmonics.

For example, the cosine harmonics are

Q

RPN MY L
am o= — > N A7 1)P7(v) cos(my)-drdy (18)

T g=1

where dvd{ has been expressed as — 111 drdy on each blade

(at ¢,). If a particular blade theory does not provide chordwise
pressure, we may assume some appropriate distribution P,(y),
which gives P, in terms of lift per unit length, L.
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+3
P73, = L@ DRV, Po)y

The chordwise part of the integral may then be expressed in
closed form, f,,, to yield the fundamental 7 equations.

1 & [l _ - 1 ‘
== 2 | L DfuPi); d7 (20a)

2n q=1

2 i
e = iqgl | L, (7, t)fmﬁﬂ(v)% dF cos(my,) (20b)

"“—lij’lL' Pr(v)- dF si 20
Ta = ™ & o cq(r’ t)fm n(v)v rs"l(md’q) ( C)

(Note that 7& = V/3/2 8Cr, 74 = = V1512 8C,, and 75 =
— V15/2 8Cy).
The functions, f,,, which appear in Eq. (20), are given by

+5
f 3 P,(y) exp(myi/F)dy
fn =

+b @b
J_B P,(y)dy

where the complex nature of f,, implies a coupling between
sin(mys,) and cos(mi,) in the usual way.

Application Considerations

Choice of Correction Functions

From Eq. (21), we see that f,, is only a function of mb/r =
k,,. For a lifting line model, all lift is concentrated at y = 0;
and, therefore, f,, = 1. For uniform pressure over the chord,
we havef,, = sin(k,,)/k,. (Reference 28 outlines other possible
cases for f,,.) Strictly speaking, a theory with f,, = 1 for all
harmonics (a lifting line at the point of velocity computation)
does not converge as the number of harmonics increases without
bound. This is to be expected, since it is well-known that lifting-
line theory has a singular integral, Ref. 29. Nevertheless, for
realistic helicopter parameters and m < 30, we find that f, =
1 is numerically accurate. Therefore, one may reasonably take
f. = 1 with little loss of accuracy. On the other hand, if one
wishes to include more than 30 harmonics, the choice f,, =
sin(k,,)/k,, converges well and effectively filters out the effect
of bound vorticity from the computation. <

Another correction factor that can be applied to the model
is the mass-flow parameter V in Eq. (14a). Strictly speaking,
this is the normalized free-stream velocity (Vp? + M%) in a
theory that assumes that induced flow is a small perturbation
to V. However, from momentum considerations, one can ex-
tend V to include also a steady induced flow about which the
induced flow in Eq. (14a) is perturbed, Ref. 30. The extended
V is given by

p2 + (A + B (A + 29)
V =
p2 + (A + 9)?

where ¥ is the momentum-theory value of the average induced
flow that obeys the relationship..

Cr=25VrI+ (A + v)? 23)

Thus, Eq. (22) allows for the added energy in the flow and

offers a smooth transition from hover to forward flight.
Furthermore, Ref. 30 shows that the steady and perturbation

thrust (as well as the steady and perturbation induced flow)

(22)
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can be combined to obtain a nonlinear induced flow medel that
is not a perturbation theory. To do this, one first assumes that
all quantities in Eq. (14a) are total quantities. Second, one
allows V of Eq. (22) to multiply ail rows of [L] ™' except the
first row. For the first row, one multiplies by V, where

V= Vil TR TR e

Third, instead of Eq. (23), one takes ¥ in V and V; from the
instantaneous value of induced flow, w, characterized by the
a™ coefficients.

2

5 = [ rmey—1
v \/5(1000. .0y L™

o | test @9

This makes the model a nonlinear theory of induced flow since
V and V; in Eq. (14a) will depend upon aj. (The approxi-
mations ¥ = Cp/(2Vy) = 7¢/(V3Vy) = V3 af are also
useful).

One could also entertain corrections for ground effect or
fuselage interference, Ref. 29. However, no correction is needed
for the tip-loss effect. Tip losses are implicit in the model since
it gives the three-dimensional flow.

Choice of Model Texture and Expansion Functions.

The above theory offers a number of choices for the user,
and these afford a great deal of flexibility in the model. Of
primary importance is the number of harmonics and the number
of radial functions for each harmonic. Here, the texture of the
aerodynamic model should match the texture of the dynamic
model. For example, if the dynamic model includes modes
through a certain frequency range, then enough harmonics should
be kept to ensure that aerodynamic terms are present for the
frequencies of interest. Similarly, if a certain number of radial
modes are present in the dynamic model, then a corresponding
number of radial inflow distributions should be used to ensure
that all modes have the correct induced-flow feedback.

Another important choice is that of the type of functions to
be used for Y in Eq. (13). These functions should be linearly
independent and well conditioned, the latter implying some

type of orthogonality. The best choice is ¥7 = % Pr(v), the

functions which also appear in the 77 integrals, Eq. (20). These
functions have several exceptional characteristics that make
them the best choice. First, they are simple polynominals in 7.
The first function (or polynominal) for each harmonic (m) is a
constant times 7™

< i

Pn v = V@m + HNCm! (26)

The higher-numbered polynomials for each harmonic (n = m
+ 1,m + 3, m + 5, etc.) simply add another odd or even
power of r for each term (7™, F"* %, 7"**, etc.). This implies
that the first term in each harmonic is directly related to the
“‘uncorrected’” dynamic inflow model of Ref. 23 with the change
of variable

aney = PmriAm/ V2m + 1) (27a)
Brii = pmeihm/V(2m + 1) (27b)

Thus, the present theory includes dynamic inflow as the first
term of each harmonic. Another advantage of this choice of

g = -:;-I;T(v) is in the computation of both [A™] and [B™].
The matrix [A™] reduces to-identity for this case; and [B™] can
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be obtained in closed form along with its inverse, A" =
(B"]! (Ref. 35). All of our numerical work to date verifies
 that this is the most logical choice for expansion functions. The
authors also have a subroutine, available to the public, that can
efficiently calculate Py (v)/v for m and n into the 1,000’s.
Another application issue is that, in some problems, it may
be inconvenient to perform the integrals of L, required to obtain
the 77 forcing terms. If, however, one has chosen the same
aumber of (or fewer expansion) terms S as there are radial
modes for vertical blade bending, then 777 can be obtained from
the generalized forces already being used for structural re-
sponse, as outlined in Ref. 28. It follows that the present model
can be applied in either the modal or finite-element arena.

Two-Dimensional Approximation

As a final aspect of application issucs, we should mention
the possibility of a two-dimensional approximation (based on
our general theory) that could be used in a blade-element, hover
application. Although we do not recommend the use of our
model in this way, such a formulation is useful for purposes
of comparison both with Loewy theory and with the two-di-
mensional version of Miller theory; Egs. (5)—(8). To formulate
such a model, one must prescribe both a single radial distri-
bution of inflow for each harmonic

1
() = X ap ~ PR (282)
and a weighting function

A™(r)

> by % P, (28b)

n

Substitution into Eq. (14) for the case of hover gives induced
flow equations for each harmonic independent of r (i.e., of v),

Q
T Xr + VAP = 5‘; S Loy (/71 fn cOS(m)  (292)
g=1

The elements, T,,, are the time constants of each harmonic in
this two-dimensional approximation; and they are given by

N\ -
T, = {77 K% ] {a7} (b7} {ar}
N

m=0_1,2... (29b)

Although T,, depends upon the choice of ¥™ and A™ used
in the two-dimensional approximation, this dependence is not
strong; and Ref. (28) offers a formula which gives an average
value of 7, for a family of assumptions

T E 2 m!
mT aNm+t+ 4 Cm+ 1)

Vaiw
m+ /2 + 19/8

(30)

large m

where 1 is the power of F in the assumed pressure or velocity.
By comparison, the eigenvalues of {B™1"' [K7] give time
constants

3/4

Tm = 232

€3))

which are the maximum possible values.
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Table I gives a comparison of T, as computed from the
eigenvalues, from a uniform pressure/velocity assumption
(¢t = 0), and from the Pitt model of Ref. (23) (t = m). One
can see that the 7 = O results are close to the eigenvalues of
the system for all m, but the Pitt model deviates at larger values
of m. Identified values of T, in Refs. (31-32) and of T, in Ref.
(33) verify the reasonableness of this two-dimensional approx-
imation.

Connection Between Present Theory and
Classical Theories

Present Model in Axial Flow

In order to compare the above theory with the existing clas-
sical theory from Ref. 2, we consider the actuator-disc equa-
tions for the special case of a non-lifting climb (V = A=
climb rate), which is the Loewy assumption. If we further
assume a linear, blade-element lifting theory

L, = ac(0,7* — NF)/2 (32)
then we can solve for A, and L., in closed form from Egs. (29)

and (32). The result is a lift-deficiency function in the form
of Eq. (3) with the inflow feedback given by

_oa < Sl k)
AW =T 2 VT Tow — O

(33

where Q is the number of blades, w is the frequency in the
nonrotating reference frame, k, is the reduced frequency of the
mth harmonic (mb), and m is a harmonic number that specifies
the inflow harmonic being excited by jQ.

The derivation of Eq. (33) is too lengthy to be repeated here.
However, it is completely straightforward and is done entirely
in closed form with no added assumptions. The relationship
between m and j follows directly from the derivation and is
closely related to the relationship between rotating and non-
rotating frequency. This relationship is outlined in Table II.
We note that the differential mode is only present for even-
bladed rotors, and higher-harmonic cyclic is only present for
rotors with a sufficient number of blades (s < Q/2).

Near-Wake Expansion of Loewy/Miller Theory

We wish to compare the near-wake approximation of lift
deficiency for the theories in Refs. 2 and 3, with the present
model, Eq. (33). For clarity, we recall that the W function, as
given in Eq. (7) of Ref. 2, depends explicitly on the phase
between the pitch of different blades. As it turns out, the W
function for any particular type of excitation (collective, cyclic,
or differential) can be expressed as in our Eq. (6), with k given
by bwy and with wg given from Table II.

Thus, Egs. (6) and (8) can be compared with Eq. (33) to
determine the relationships between the two theories. At first
glance, the only correlation between the formulas seems to be
that © and wy related in a similar manner to m and j for each

Table I Time constants (7. for two-dimensional inflow
approximation, mth harmonic

Uniform Pressure/

m Eigenvalue Velocity Ref. 23)
0 .500 458 424

1 .300 .268 226

2 214 196 155

3 167 156 118

4 136 .129 096

® .750/m .798/m 564/m
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Table II Harmonic relationships

Rotating ‘ Inflow Phase Shift
Type of Mode Frequency Harmonic of gth Blade
Collective W = © m = |j0| 0
Regressing Cyclic we = +s m=1[jQ +s| exp(isy,)
(s-th harmonic)
Progressing Cyclic wg = w — s m = |j@ —s|  exp(—is )

(s-th harmonic)

Differential wg = wx 02 m=|jQ £ Q2] (-1

type of mode. In truth, however, the formulas are nearly identical.
To see this clearly, we expand the function A = wk(1/2 + W)
in terms of its complex w poles, w = mQ + (Vi/b)i,

A) = TR(1/2+ W)

ca « 1

8 e V+ (BlR) (0 - jQ)i

(34)

where we have used a = 2w, h = 4V/o,and o = 25Q/1'r.

Comparison of Lift-Deficiency Functions

We can now directly compare the two theories: near-wake
Loewy (or Miller), Eq. (34); and our state-space model, Eq.
(33). The similarities between these two equations are amazing
when one considers that the former is a closed-form, actuator-
disc model and the latter is a vortex-layer model. To begin,
we look at the differences. Of course, our present theory is a
truncated model. It has only a finite number of states, 2J +
1. Therefore, its correlation with Loewy/Miller theory will
depend on the convergence characteristics of the series in Eq.
(33). Next, we note that either representation has a real part V
and an imaginary part (@ — jQ)i in the denominator of each
term. However, in Loewy theory, this latter term multiplies a
fixed number, b/k, that depends only on reduced frequency;
whereas, in the present theory, this imaginary term multiplies
T,,. which depends on the summation index in the series. There-
fore, Eq. (33) must rely on the numerator terms, f,,(k.,), for
formal convergence. However, in practice, even with f,, = 1,
the divergence is very slow. Therefore, as long as no more
than 20 to 30 terms are used (k <.6), Eq. (33) is essentially
stable and does not diverge, even wjth f,, = 1.

Given that Eq. (33) converges (either through f,, or trunca-
tion), we now turn to how well it compares wjth Eq. (34). The
key to this is the understanding that both series are dominated
by the pole that places o closest to jQ (and, therefore, wg
closest to m). Near that pole, we may replace b/k by

bik = bi(blwg|ir) = rim = T, (Loewy) (35)

Eq. (35) gives us the time constants from Loewy theory, and
these can be compared with those from our theory, Egs. (30)
and (31). If we take Eq. (35) at the 75 percent to 80 percent
radial location, then the time constants from the two theories
are nearly identical for large m, Table I at m = «. However,
for smaller m, the theories begin to deviate. At m = 1, a point
for which the actuator-disc time constant is well established by
parameter identification as .22 —~ .24 (Refs. 31-33), Loewy
theory gives three times the correct apparent mass. Similarly,
work in Ref. 29 establishes T, at .42, but the Loewy theory
gives T, = . The source of this overprediction is that Ref.
2 is based on a two-dimensional assumption; but the apparent-
mass time constant is a three-dimensional effect.

Therefore, not only does our new theory essentially recover
Loewy theory as a special case, but it actually improves Loewy
theory through a better estimate of apparent mass at small m.
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It further follows that any analysis that now uses Loewy theory
could improve that theory by replacement of k = b|wg| by k
= b(wg + 1.5), Eq. (31). This would give the theory finite
apparent mass at = 0 and would give more realistic values
of apparent mass at other frequencies.

Comparison with Theodorsen Theory

The next area of investigation is the correspondence of our
theory with Theodorsen Theory, which is the limit as A (or V)
goes to . For Loewy theory, W clearly goes to 0 in this case;
and A approaches wk/2, the Theodorsen near-wake approxi-
mation. It would seem that this limit would be unapproachable
by our new theory because Eq. (34) shows that V = o will
give A = 0 for a finite number of terms. However, recognizing
that our series is essentially the same as the Loewy expansion,
Eq. (34), Ref. 28 shows that, in the limit as many terms are
taken, our theory will similarly recover the near-wake approx-
imation to the Theodorsen theory for V = . The number of
terms required for convergence is

JO/im >>V (36)

Equation (36) implies that the ratio of harmonics retained to
harmonics desired must be greater that 10 X V (for 10 percent
€rTor).

Of course, the above limit as J — o assumes that one takes
an appropriate f,, that allows formal convergence. However,
for typical helicopter problems (V < 0.1, m = Q = 4), only
four harmonics would be needed to capture the contribution of
the near-wake value (wk/2) to the total solution.

Two-Dimensional Airfoil Theory

Although we believe that Eq. (34) will find its broadest
applications in the range of rotor dynamic problems with fre-
quencies less than 30/rev, it is important to realize that the
theory is not restricted to this. For example, if one takes f,, =
Jotk,) — i J,(k,), which corresponds to the pressure distri-
bution for a flat-plate airfoil, then the theory will converge to
the induced velocity that gives non-penetration of the airfoil
surface. For example, Fig. 2 shows the velocity distribution in
the vicinity of the blade at 1,000 harmonics for a normalized
blade pitch (on the blade, we have — 1 < y/b < + 1). The
figure shows the large upwash at the leading edge (négative
w) and the convergence to nonpenetration (w = 2.44) on the
blade surface. Of course, this convergence is slow because
1,000 harmonics around the azimuth implies only 16 harmonics
across the chord for b = .05. Therefore, the present theory is
slow to converge on the induced flow near the blade surface,
where the effects of concentrated bound vorticity is large. How-
ever, normally the effect of bound vorticity is included in the
lift model and is not desired in the inflow model. For such
cases, our theory with m < 30 is ideal. It provides an accurate
representation of the induced flow from the shed wake, while
filtering out the effect of bound vorticity.

Prandtl-Goldstein Three-Dimensional Effects

In the above discussion, we have concentrated on compar-
isons of two-dimensional theories with a two-dimensional ap-
proximation to our model in axial flow. We now tum to
comparison with three-dimensional models for lightly loaded
rotors in axial flow. Prandtl offers an approximation for static
inflow based on a flat-wake assumption, and Goldstein provides
a more accurate helical-wake solution, Ref. 34. These solutions
are provided in terms of a momentum-correction factor, F; and
they are virtually identical for A/Q < 0.1, which is the case
for most helicopters. In essence, the factor F forces the induced
flow to become larger near the tip so that the angle of attack
and lift will approach zero as F approaches unity. Figure 3
shows that the solution for our model (M = 4 harmonics and
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~%—— non-penetration

2 - 1 2 3 4

T
I,
Fig. 2. Velocity distribution near a flat-plate airfoil, f,, = Jo(mi) -
i J,(mb), 1000 harmonics, w = 0.

S = 4 polynomials, 36 state variables) is very close to the
Prandtl/Goldstein solution. Numerical results have shown that
our model does converge to the Prandtl/Goldstein lift with 4
percent error at 10 state variables, 2 percent error at 25 state
variables, and 1 percent error at 50 state variables. Thus, three-
dimensional wake effects are implicit in this model.

M=4
*
°r LEGEND -
@ —-— =85=4
o ------ = S=1
~ ——— = Prandtl Formula
°' -
ol
(=]
n
=)
<
o
«
o
N
=]
s
o 1 L 1 [ L [ [l 1 L
0 01 02 03 04 05 06 07 08 09 1
r

Fig. 3. Radial induced-flow distribution, one blade, 4 harmonics,
ca=02,V=X.050=40=0
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Numerical Results

Lift-Deficiency

In Ref. 35, we have given detailed comparisons between the

near-wake Loewy approximation and the two-dimensional ver-
sion of our model in hover. Those results show that: 1) the two
theories agree at higher frequencies (o > 4), 2) Loewy theory
is in error at low frequencies (o < 1) due to the overly large
Loewy apparent mass terms and, 3) the number of terms re-
quired to converge numerically to the near wake theory at w
= mis JQ/m > 10V, as predicted by analysis. However, what
is left unanswered in that paper is how our new theory compares
with the complete Loewy theory (including the Bessel functions
J, and ¥, which are dominated by terms of type kink at small
k).
In Figs. 4-7, we compare lift-deficiency functions from the
Loewy near-wake theory (A = wki2 + wkW), from the full
Loewy theory, from our theory with J = 3 JQ = 12 har-
monics), and from our theory withJ = 6 (JQ = 24 harmonics).
All results are for 0 = 4,V = .05, and 0 = 0.61. A com-
parison of the two Loewy theories gives an indication of the
importance of the kink type terms. A comparison of Peters’
theory for / = 3 and J = 6 indicates how our theory implicitly
captures the kink terms as J increases. However, it is important
to realize that we do not expect our theory to converge to Loewy
theory. The Loewy theory is only a two-dimensional approx-
imation; while our theory is based on a three-dimensional model.
Thus, just as Loewy theory over-estimates the apparent mass
terms at integer w’s, it over-estimates the effect of these kink
terms due to its model of infinite wake sheets (as opposed to
a truly returning wake).

Real Part

Peters’ Theory.J=6
Peters' Theoryd—3

lLorwy's Theory

0.0 T
00 10 20 Jo 4.0 50 6.0

Fig. 4a. Real part of lift-deficiency function, collective mode,
V=.050=4,J=.061,a=2m

0.6
Peters’ Theory.J=6
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—
<
Q-
s
-
<
=
Qb
[
E
-0.8 T T T T U
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Fig. 4b. Imaginary part of lift-deficiency function, collective mode,
V=.5¢0=4J=.06l,a =2m
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Real Part

Peters' Theory J=6

Peters’ Theory.J=3
loewy's Theory
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0.0 1.0 20 30 - 40 50 6.0

Fig. Sa. Real part of lift-deficiency function, regressing mode,
V=.50=4J=.06la=2u
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Fig. 5b. Imaginary part of lift-deficiency function, regressing mode,
V=J.50=4J]=.06l,a =2m.
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Fig. 6a. Real part of lift-deficiency function, progressing mode,
V=J.50=4J=.061la=2m.
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Fig. 6b. lmaginai'y part of lift-deficiency function, progressing mode,
V=.50=4,J]=.06l,a =2m
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Figure 4 provides a comparison of these four models for
collective excitation. The real part of C’(k) shows close agree-
ment among all models at higher frequencies, and all models
show the loss of lift at @ = 4. However, the models exhibit
a large difference near w = 0, for which our model approaches
the correct (experimentally verified) deficiency, 0.5. There is
little effect of the kink terms, and the J = 3 results have
converged. For the imaginary portion of C’(k), the curves for
o < 1.0 show a large discrepancy between Loewy theory and
our theory. The slope of the Im C'(k) at ® = 0 is directly
proportional to the time constant, 7, for the collective mode
and to T, for the regressing mode. Thus, the slopes of J = 3
and J = 6 curves reflect T, = .458 as in Table I. This number
is also in agreement with the experimental results of Carpenter
and Fridovich, Ref. 36, Ty = .424. The Loewy theory, in
contrast, shows an infinite mass (jump in Im C’(k)) and an
incorrect variation with w. Furthermore, the k/nk terms provide
a large contribution to Loewy theory but of the wrong sign to
improve correlation with our theory. As we move to the fre-
quency range 1.0 < w < 3.0 (for which Loewy theory should
be more accurate), we see a dramatic change in trends. In that
range, the kink terms of Loewy’s complete theory give a large
improvement in correlation between models. Thus, we con-
clude that kink terms are important in this range (k = 0.1) and
that the J/ = 3 results from our theory have implicitly captured
these terms. Next, near @ = 4.0, all theories show that the
Im C' (k) approaches zero as w approaches this integer multiple.
Lastly, for ® > 4.0, we require about six times as many har-
monics to converge on Im C’(k) as we did for Re C'(k).

The above trends are repeated for regressing and progressing
excitations, Figs. 5 and 6. The Loewy theories give overly
large slopes for the imaginary component at o < 0.5. The J

Real Part

Peters’ Theory J=6

Peters’ Theory,J=3
Loewy's Thenry

00 T " ™ g 3
0.0 1.0 20 30 4.0 5.0 6.0

Fig. 7a. Real part of lift-deficiency function, differential mode,
V=.50=4,J]=.06l,a = 2m.
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Fig. 7b. [Imaginary part of lift-deficiency function, differential mode,
V=1.50=4J=.06l,a = 2m
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= 3andJ = 5 curves in Fig. 5 reflect T; = .268, as in Table
I. This is in agreement with T} = .226 as measured in Ref.
37. The Loewy curve, on the other hand, gives a slope that
reflects T, = .750, about three times too large. For larger w,
Loewy theory correlates better, provided kink terms are in-
cluded; and J = 3 results have converged at w < 4.0 for both
real and imaginary parts. (Loewy’s theory exhibits an abnor-
mality at @ = 1 for the progressing mode because that is seen
as wg = 0 in the rotating system). Figure 7 completes the set
with C’(k) for a differential excitation. The Loewy theory shows
no lift deficiency at wg = O since it treats this as a static
excitation. However, wg = 0 for a differential mode is seen
by the flow as a 2/rev progressing excitation. Thus, our theory
shows Re C"(k) < 1.0 at wg = 0. The Im C’(k) at wg < 1.0
clearly shows the importance of the kink terms and the fact that
they are captured by our finite state model. :

Thus, from these results, we may conclude that our finite
state model not only captures Loewy theory and Theodorsen
theory in hover but also improves upon them through a more
accurate wake model. The number of terms required to con-
verge on Re C'(k) forw = m s JO > 10Vm, and the number
of terms required for convergence to Im C' (k) is approximately
six times this number.

Experimental Frequency Response

There are two good sets of data on the frequency response
of two-bladed rotors. The first set of data, taken from Rev.
31, is for collective excitation at zero lift (V = h = 0). The
system parameters are B%y = 5.35,p = 1.015and 0 = .066.
Figure 8 shows the comparison of Loewy theory, actuator-disc
theory, and this data at two different RPM’s. The two data sets
(circles and triangles) have the same fundamental flapping fre-
quency (p = 1.015/rev) but different higher-mode frequencies.
Thus, the w at which the two data sets deviate (0 = 2.4) shows
where higher modes become important. Both theories include
the nonlinear V (or k) which aids correlation at @ = 2. How-
ever, this nonlinear term has negligible effectat .2 < w < 1.8.
The comparisons are very instructive. Near w = 0, the present
theory shows the correct deficiency in Re(B), Fig. 8a; but the
singularity in the Loewy function forces F' = l atw = 0. As
we approach the w = 0.5 peak, the Loewy theory correspond-
ingly gives an inaccurate representation, showing no peak at
all. The new theory adequately matches the data.

Similarly, in the imaginary part, Fig. 8b, for o < 1.0, the
new theory predicts the phase well, whereas Loewy does not.
Beyond this point (0.8 < w < 1.6), both theories do 2 good
job; but the present model is more accurate through the critical
range for which we previously saw the largest differences in
C' (1.0 < w < 1.6). As we approach the 2/rev cusp (1.6 <
® < 2.0), the Loewy theory does better in the prediction of
the Re(B); but the new theory does better on Im(B). In sum-
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Fig. 8a. Real part of flapping response, collective mode, @ = 2,
B =095 0 = .06b, vy = 6.63,V = 0, p = 1.015, Ref. (30).
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Fig. 8b. Imaginary part of flapping response, collective mode,
Q0 =2,B =095 0= .06b,y = 6.63,V = 0, p = 1.0I5, Ref. (30).

mary, both theories do a good job of correlation of this data
for w > .25. By comparison, the theory without inflow dy-
namics does a poor job of matching the data near w = 0 and,
for > 1.0. '

A second set of data that is important here is the pitch-stirring
experiments of Ref. 37. These data are for a two-bladed rotor
that could be excited in a purely progressing or regressing mode
(progressing gives 0 < wg < 1, regressing gives wg > 1). Ref.
28 shows that this data is better correlated with our new theory
than with Loewy theory.

From these data, we find that the new theory is consistently
better than Loewy theory both in the physical explanation of
its behavior and in comparison with frequency-response data.
When we further recall that the new theory is in the time domain
and is not restricted to axial flight, the new theory is a clear
choice for an unsteady inflow ‘model.

Other Correlations

We now turn to computations for which Loewy theory cannot
be applied. One such case is the computation of flow off the
blade in forward flight. Once we know af and @7, we have
the entire potential function and, consequently, the entire pres-
sure and velocity distribution. Reference 35 provides a detailed
comparison of our theory with both steady and unsteady flow
measurements off the blade, as described in Ref. 32.

Another relevant computation is comparison of theory and
experiment for rotor response to a ramp change in collective
pitch, Ref. 36. This time-domain solution cannot be performed
by classical theories. Furthermore, due to the V = 0 start-up,
we must use the nonlinear version of actuator-disc theory. For
this case, we use a single radial function for inflow. Further-
more, we only use a single harmonic, m = 0. Figure 9 shows
the comparisons of theory and experiment. Also shown on Fig.

9 are computations from a free-wake program with curved.

vortex elements from Ref. 33. We note that the present theory
gives good correlation both with the experiment and with the
free-wake results.

Summary and Conclusions

We propose an unsteady aerodynamic theory (i.e., adynamic
induced-flow theory) with the following advantages over con-
ventional unsteady models:

1) The model is based on first principles. It is three-dimen-
sional, unsteady acceleration-potential theory with arbitrary lift
distribution and a finite number of blades. The rotor disc can
be at any angle to the flow.

2} The method is extremely flexible in application. The user
may choose the number of harmonics as well as the type and
number of radial shape functions, including finite elements.
Radial or harmonic coupling can be neglected if necessary, and
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Fig. 9b. Time history of thrust due to ramp input for 0, of 12° at
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the theory may be applied either as a perturbation theory or as.

a nonlinear theory. ‘

3) The method is easily used with other theories. It may be
applied either in the time or frequency domain and may be
coupled to any blade-lift model (including dynamic-stall mod-
els, table look-up, compressible flow, and CFD computations
in two-dimensions). All that is required is thg augmentation of
the user’s equations with additional first-order state equations.

4) The model is adaptable. One .may include simple cor-
rection factors to account for chordwise lift distribution, wake
contraction, and ground effect.

5) The theory recovers other theories. Implicit in this model
are Theodorsen theory, the Loewy and Miller functions, Prandtl/
Goldstein theory, and dynamic inflow theory.

6) The theory is not limited to flow at the blade. Once the

“flow states are known at the rotor, the potential function pro-
vides pressures and velocities everywhere in the flow field.

7) The theory shows good correlation with all data to which
it has thus far been compared. This includes collective and
differential frequency response, response to transients in col-
lective pitch, and laser flow measurements.

The limitations of the model are that it converges slowly and
so does not easily capture flow discontinuities. It cannot provide
detailed information close to the blade surface such as would
be necessary for modeling blade-vortex interactions or acoust-
ical phenomena. It is basically a prescribed-wake analysis and
cannot account for wake roll-up. Thus, its usefulness is in the
area of rotor aeroelasticity, Q/rév vibrations, and design of
higher-harmonic controllers.
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